the genesis user, selecting a general-purpose format to succinctly
describe mathematical operations, and creating a ‘genesis publishing
tool’ to capture that information from the genesis user and to produce a
well-formatted genesis block file.

Now let’s move further from the two basic concerns — whether to
publish and how to publish — and move on to an entirely different
guestion. What we are about to discuss is something that is not defined
by the Bitcoin protocol, which has a well-established proof-of-work
mechanism that needs no introduction. In the case of blockchain
networks with lesser-known proof-of-operations, there lies a possibility
that one or more nodes get confused about the proof-of-work operation
and this is used as a vulnerability.

To overcome this possibility, Eleutheros allows trustless verification of
the proof-of-work operation used by any Eleutheros network. Therefore
regardless of how or what a node perceives to be the proof-of-operation,
it can be verified. This is implemented through a 256-bit field in the
header format (“ChainID”) that is calculated by subjecting a pre-
determined and openly published 256-bit string (the ID_input) that is part
of Eleutheros, and is contained in Eleutheros implementations. Thus, the
ChainlD of any Elutheros network is the product of subjecting ID_input to
the proof-of-work of that network, whatever it might be.

One benefit of this approach is that ChainlD can be used to trustlessly to
verify whether the proof-of-work operation of the Eleutheros network is
what it is believed to be. Any node can independently subject ID_input to
whatever the proof-of-work operation is believed to be and confirm the
result by comparing it with the ChainID in the block header of that
network. If the results match, then the node can be almost certain of
their correct assumption of the proof-of-work operation for that
blockchain network. If it does not match, then the node operations are
suspended and an error message flashes indicating the same.

The only possible exception is ChainID collisions and we aren’t too
concerned about it, given that it is a 256-bit string subjected to a
mathematical operation that is (presumably) a cryptographic OWF.
However, it is quite possible that the genesis user may have selected an
inferior proof-of-work operation. As Eleutheros does not specify
anything about what proof-of-work operation the genesis user must
select, this is quite possible.

One way of dealing with that is by duplicating the process (that is,
ChainID2 and ID _value2), which greatly reduces the possibility of

52



